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a b s t r a c t

If left untreated, Alzheimer’s disease (AD) is a leading cause of slowly progressive dementia. Therefore,
it is critical to detect AD to prevent its progression. In this study, we propose a bidirectional progressive
recurrent network with imputation (BiPro) that uses longitudinal data, including patient demographics
and biomarkers of magnetic resonance imaging (MRI), to forecast clinical diagnoses and phenotypic
measurements at multiple timepoints. To compensate for missing observations in the longitudinal data,
we use an imputation module to inspect both temporal and multivariate relations associated with the
mean and forward relations inherent in the time series data. To encode the imputed information,
we define a modification of the long short-term memory (LSTM) cell by using a progressive module
to compute the progression score of each biomarker between the given timepoint and the baseline
through a negative exponential function. These features are used for the prediction task. The proposed
system is an end-to-end deep recurrent network that can accomplish multiple tasks at the same time,
including (1) imputing missing values, (2) forecasting phenotypic measurements, and (3) predicting
the clinical status of a patient based on longitudinal data. We experimented on 1,335 participants
from The Alzheimer’s Disease Prediction of Longitudinal Evolution (TADPOLE) challenge cohort. The
proposed method achieved a mean area under the receiver-operating characteristic curve (mAUC) of
78% for predicting the clinical status of patients, a mean absolute error (MAE) of 3.5ml for forecasting
MRI biomarkers, and an MAE of 6.9ml for missing value imputation. The results confirm that our
proposed model outperforms prevalent approaches, and can be used to minimize the progression of
Alzheimer’s disease.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alzheimer’s disease (AD) is an irreversibility of a neuronal
isease that affects memory, cognition, and behavior (Cuingnet
t al., 2011). One of the obstacles in the efficient early detection
nd planning of therapeutic procedures is the complex nature
f AD biomarkers as well as the heterogeneity of measurements
aken from various imaging modalities (Nie, Meng, Song, Chang,
Li, 2017). In the absence of significant progress in the de-

elopment of modalities to treat AD, a number of researchers
ave examined alternative viable and cost-effective solutions to
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provide the care and treatment required by AD patients (Gavidia-
Bovadilla, Kanaan-Izquierdo, Mataró-Serrat, Perera-Lluna, & Ini-
tiative, 2017; Huang et al., 2016; Zhou, Liu, Narayan, Yeand,
& Initiative, 2013). This includes ways to facilitate AD patients
with adequate and effective lifestyles as well as levels of neu-
ral training. To understand and predict how AD progressively
develops in a patient is therefore essential for both early inter-
vention and the effective provision of personalized healthcare
services (Workgroup et al., 2016).

In the literature, traditional time series-based approaches and
algorithms using machine learning techniques have been fre-
quently used to model the progression of AD and classify its
severity (Gavidia-Bovadilla et al., 2017; Huang et al., 2016; Liu,
Zhang, Zhang, & Zhou, 2013; Sukkar, Katz, Zhang, Raunig, &
Wyman, 2012; Vu, Ho, Yang, Kim, & Song, 2018; Zhou, Liu,
Narayan, & Ye, 2012; Zhou et al., 2013). Despite promising
progress made in studies related to disease modeling, many chal-
lenging modeling problems persist (Goldstein, Navar, Pencina,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Ioannidis, 2017). Instead of forecasting the status of diseases,
he literature has focused mainly on modeling their progression.
his involves predicting the status of progression of diseases at
nown times based on the available data, or focusing only on
lassifying stages of progression in case of restricted observations.
raditional studies have also ignored the problem of missing data
hen predicting the progression of AD (Lei, Yang, Wang, Chen,
Ni, 2017; Liu, Zhang, Adeli, , & Shen, 2019; Stonnington, Chu,
löppel, Clifford, Ashburner, Frackowiak, & Alzheimer Disease
euroimaging Initiative, 2010; Sukkar et al., 2012).
In applications, missing values in a time series, such as due

o equipment damage or communication errors, are common
wing to unforeseen accidents that can damage the performance
f downstream applications. In the medical field, data may be
issing due to the design of the study, delay in data collection,
ubject attrition, or data collection errors. Many previous studies
ave sought to solve the problem of missing data in statistics
nd machine learning. However, most of them require strong as-
umptions owing to the missing values. The two main approaches
o handle missing data are (Schafer & Graham, 2002) "prepro-
essing" and "integrative". Missing data can either be solved for
y imputing values through steps of preprocessing (Zhou et al.,
013), or they can be integrated directly into the given models or
raining strategies (Aksman et al., 2019).

In this paper, we propose a bi-directional progressive recur-
ent network with imputation (BiPro) for predicting AD progres-
ion. It uses biomarkers from magnetic resonance imaging (MRI)
nd patient demographics to tackle three tasks: (i) imputing
issing values, (ii) forecasting phenotypic measurements, and

iii) predicting the clinical status of the patient. Internally, BiPro
dapts recurrent neural networks (RNN) to impute missing values
ithout any specific assumption over the data. Following work
y Jung, Jun, Suk, and Initiative (2020), the proposed BiPro model
an be defined as consisting of three modules: Imputation, Encod-
ng, and Forecasting. The main differences between this study and
ung’s work are that the Imputation module learns the missing
alues directly in a recurrent dynamical system based on the
bserved data and static information, which significantly boosts
ts final performance, and that the Encoding module learns latent
ecurrent features from imputed data based on an LSTM net-
ork, which determines the progression score of each biomarker
ynamically and uses it as an input to the LSTM cell. In ad-
ition, we propose a bidirectional strategy to extract hidden
eatures for prediction tasks and provide an accurate estimation
f missing values. Lastly, the Forecasting module predicts and
lassifies the clinical status of the patient at the next time-
oint into three groups: cognitively normal (CN), mild cognitive
mpairment (MCI), and AD dementia. It also predicts the MRI
iomarkers. A multiobjective function for the proposed model is
ormulated and optimized in an end-to-end manner. We evalu-
ted the performance of our proposed model on The AD Predic-
ion Of Longitudinal Evolution (TADPOLE) challenge cohort, and
bserved that it outperformed competing methods on all tasks
oncerning imputation, forecasting, and classification. The main
ontributions of this study can be described as follows:

• We propose an end-to-end system to model long-term dis-
ease progression through missing value imputation, pheno-
typic measurement forecasting, and clinical status predic-
tion.
• We provide a formula to combine both static and dynamic

relations for missing value imputation to obtain effective
estimation.
• We propose a bidirectional strategy for longitudinal data

that can support a previous module for imputation and
extract temporal representatives in both directions (forward

and backward) for prediction tasks. f
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• We propose a variant of an LSTM-based cell by using the
level of progression to forecast both the clinical status of
patients and the MRI biomarkers. This can be used to model
the trajectory of progression of the disease.
• We experimented on a public dataset and used cross-

validation to verify the generalizability of the proposed
system. Several aspects of disease progression analysis were
exploited to better understand AD.

The remainder of this study is structured as follows: Sec-
ion 2 gives a brief description of related studies on predictive
odeling using RNN in healthcare, Section 3 presents details of

he proposed BiPro model, and Section 4 reports on experiments
hat were conducted to compare the proposed method with
onventional methods, and analyzes the results. Lastly, Section 5
resents the conclusion of our study.

. Related work

In this section, we review the use of RNNs in healthcare
pplications and previous studies on AD progression. We explore
he missing value problem and RNN-based solutions from past
ork as well. RNNs are good at capturing time series patterns
Lipton, 2015). RNN models have recently shown significant po-
ential for use in healthcare applications. Examples include the
se of gated recurrent units (GRUs) (Choi, Bahadori, Schuetz,
tewart, & Sun, 2016) as a diagnostic tool, and for predicting
edication for patients’ subsequent visits; predicting the early
nset of cardiac failure using GRU models (Choi, Schuetz, Stewart,
Sun, 2017); LSTM models for predicting the onset of multiple

onditions (Razavian, Marcus, & Sontag, 2016); and the diagnostic
lassification of patients in the pediatric intensive care unit (PICU)
y using LSTM models (Lipton, Kale, Elkan, & Wetzel, 2017). The
elevant studies have applied different RNN models for medical
rediction by using longitudinal data on patient over time.
In the literature, the prediction of AD progression can be

ivided into three subtopics: classification (Fedorov et al., 2019;
ee, Nho, Kang, Sohn, & Kim, 2019), modeling (Bilgel, Jedynak,
& Initiative, 2019; Lorenzi et al., 2019; Venkatraghavan, Bron,
iesse, Klein, & Initiative, 2019; Wang, Qiu, & Yu, 2018), and
stimation (Doody, Massman, & Dunn, 2001; Lorenzi et al., 2019;
ie et al., 2017). In the context of classification, researchers
eek to identify the state of the patient in terms of either non-
onversion or conversion over a long period of time. Fedorov
t al. (2019) explored using Deep InfoMax (DIM) (Hjelm et al.,
018) to classify stable MCI versus progressive MCI patients by
earning deep nonlinear representations of neuroimaging data as
he output of a convolutional neural network. In the context of
odeling, Wang et al. (2018) modeled the progression of AD in
atients on subsequent visits by relying on a ‘‘many-to-one’’ en-
anced RNN architecture to support time shift. Different numbers
f visits and uneven periods of time can be covered using this
pproach. Furthermore, Bilgel et al. (2019) proposed a Bayesian
rogression score model (BPSM) to compute the trajectories of
iomarkers from NL (normal) to MCI and AD. In the context of
stimation, Nie et al. (2017) proposed a Multisource Multitask
earner to estimate cognitive scores, such as the mini-mental
tate examination (MMSE) and Alzheimer’s disease assessment
cale-cognitive subscale (ADAS-Cog). These scores can help esti-
ate the severity and progression of cognitive impairment due

o AD.
To solve the problem of missing data, Che, Purushotham, Cho,

ontag, and Liu (2018) proposed a deep recurrent network called
he gated recurrent unit with decay (GRU-D) to capture long-
erm dependencies in the time series and model the missing
atterns. GRU-D is an RNN-based approach to imputation that

ills each missing value with the weighted combination of the last
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Fig. 1. Example of missing value types in EHR: irregularly sampled intervals (top left), asynchronously sampled features (bottom left), and a combination of two
ypes of missing values (center right).
F
r
n
i
i
o
p

alid observation and the global mean (static relation), together
ith a recurrent component. Yoon, Zame, and van der Schaar
2019) considered a temporal relation for imputation. Contrary
o a standard bidirectional RNN, the timing of the inputs to the
alient layers are reversed in a forward-and-backward direction.
hese imputed values are dynamically updated during training
ntil they are optimal (dynamic relation). Jung et al. (2020) used
n RNN for missing value imputation in time series data, and
hen fed the imputed values to an LSTM cell to forecast both the
iagnosis of AD and MRI biomarkers. Their model is an adaptation
f the one propose in Cao et al. (2018), and inspects the temporal
nd multivariate relations of measurements (dynamic relations)
or missing value imputation (and is called LSTM-I in our com-
arisons below). Nguyen et al. (2020) proposed a minimal RNN
alled MinRNN to predict the clinical diagnoses of patients, their
ognition, and ventricular volume. Their model has fewer param-
ters than other RNN models, such as the LSTM, and therefore is
ess prone to overfitting.

In general, the above approaches do not consider combining
oth static and dynamic relations for the imputation task, and
ost models consider only the forward direction. An exception

s the MRNN (multidirectional recurrent neural network) (Yoon
t al., 2019). The MRNN model has a similar process to that of
ypical bidirectional networks, where there are two independent
aths and the hidden state is encoded by previous state (in case
f a forward path) or the next state (in case of a backward path).
he difference is that the MRNN uses both the previous (forward
ath) and the next (backward path) inputs as well as the hidden
tate to encode the current state. We can use the backward
irection, where each value in the time series can be derived from
he future to the past by using another fixed, arbitrary function.
n such a case, the missing values are given gradients that are
elayed in both the forward and the backward directions with
onstraints, which increases the accuracy of estimation of missing
alues and improves the final prediction.

. Proposed method

To predict AD progression, we introduce an end-to-end deep
ecurrent network (BiPro) that consists of three modules: Imputa-
ion, Encoding, and Forecasting. The Imputation module estimates
issing values by using hidden representations from both the
revious timepoint of the forward path and the next timepoint
f the backward path. In general, the presence of missing values
n time series data leads to two major problems, as shown in
424
Fig. 1: an irregularly sampled interval pattern, where the interval
between each pair of timepoints is different while all features
are simultaneously collected, and an asynchronously sampled
feature pattern, where not all features are periodically collected.
The missing pattern of longitudinal data is composed of both
these missing patterns, hence placing such data in a disadvan-
tageous position compared with the complete data used in other
statistical models.

Many studies have discarded subjects or timestamps from this
problem such that a large amount of data can be lost. We define a
formula to combine different relations for missing value imputa-
tion. In particular, we investigate the multivariate relations (Jung
et al., 2020) among the observed values at the given timepoint,
temporal relations from the recurrent network, and the empir-
ical mean and the last valid observations up to the timepoint
being considered. Moreover, to capture the underlying temporal
properties in the given time series data, the Encoding module can
encompass complete observations from the Imputation module.
inally, we use the Forecasting module to transform the encoded
epresentations to forecast the volumetric measurements of the
ext timepoint and predict the future clinical status of the patient
n terms of three classes: cognitively normal (CN), mild cognitive
mpairment (MCI), and AD dementia. Fig. 2 provides an overview
f the architecture of the proposed BiPro. The novelty of the
roposed BiPro can be summarized as follows:

1. We propose an integrative imputation module (Eq. (9)) to
combine static and dynamic relations to estimate miss-
ing values. The fused factor is determined by using the
temporal decay (Eqs. (6) and (7)) that represents the influ-
ence of the missing duration. This indicates that the longer
the missing period is from the previous observation, the
smaller is the contribution of the estimated value.

2. We propose a variant of an LSTM-based cell (Fig. 5), called
multifeature aggregated long short-term memory with
progressive score (MAPro-LSTM), to fuse multiple features,
including patient information, hidden state, the estimation
of missing values, mask of the valid features, and progres-
sive scores. The progressive scores computed by Eq. (11)
are modified from the studies in Bilgel, Prince, Wong,
Resnick, and Jedynak (2016) and Jedynak et al. (2012) to
be learned dynamically through MAPro-LSTM.

3. In the typical bidirectional LSTM (BiLSTM) and the MRNN,
the forward and backward paths encode temporal features
independently before concatenating at the end. This means
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Fig. 2. Overall architecture of the proposed BiPro model.
Fig. 3. An example of the input time series X , global mean X̄ , masking observation M for X , and time interval from last observation ϕ.
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that they use only temporal features for the imputation
task and cannot update back the Imputation module. To
solve this problem, we propose a forward-to-backward
bidirectional strategy for dual association between the Im-
putation and the Encoding modules in both directions (for-
ward and backward). The details are shown in Algorithm 1.

3.1. Notation

Following Che et al. (2018), we first denote a multivariate time
series with N variables of length T by X = (x1, x2, . . . , xT )T ∈
RT×N , where, for each t ∈ {1, 2, . . . , T } , xt ∈ RN represents the
tth measurement of all variables and x{n}t denotes the measure-
ment of variable n of xt . Xd =

(
xd,1, xd,2, . . . , xd,T

)T
∈ RT×N

represents demographic information. Let νt ∈ R represent the
timestamp when the tth observation is obtained, and assume
that the first observation is made at timestamp 0 (ν1 = 0). We
introduce a masking vector M = (m1,m2, . . . ,mT )

T
∈ {0, 1}N to

denote variables that are missing (0) or observed (1) at time step
t , while maintaining the time interval ϕ

{n}
t ∈ R for each variable

n since its last observation. Specifically, this can be expressed as

m{n}t =

{
1, if x{n}t is observed
0, otherwise

(1)

ϕ
{n}
t =

⎧⎪⎨⎪⎩
νt − νt−1 + ϕ

{n}
t−1, if t > 1,m{n}t−1 = 0

νt − νt−1, if t > 1,m{n}t−1 = 1
0, if t = 1

(2)

Fig. 3 shows an example of the four variables (N = 4) and the
seven timepoints (T = 7) used for measurement X , the global
mean X̄ , timestamps ν, masking M , and time interval ϕ. In this
example, we consider how to compute ϕ

{4}
7 , the time interval of

the fourth feature at the seventh timepoint. Because the last valid
observation from X {4} (NA) is X {4} (0.39), ϕ{4} = 7− 4 = 3.
7 4 7
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3.2. The Imputation module

We use both static and dynamic relations for the imputation
task by designing an architecture that combines temporal and
multivariate relations, the global mean, and the last valid ob-
servations. The temporal and multivariate features learned from
the training process represent dynamic relations while the global
mean, x̄, and the last valid observations, x′t , computed from the
dataset, which remain unchanged during the training process,
represent static relations. The context of temporal relations, x̂t in
a given sequence is obtained from the hidden state values

→

h t−1 of
he forward path and

←

h t+1 of the backward path, and is expressed
s

ˆt =
→

Wx
→

h t−1 +
←

Wx
←

h t+1 + bx (3)

here
→

Wx,
←

Wx, bx are learnable parameters for the multivariate
inear transform. The term

←

Wx
←

h t+1 is added on the backward
ath. While keeping the observed data, we compute the tem-
orary vector, x̃t , by replacing the missing values with those
stimated from the temporal relations as follows:

˜t = mt ⊙ xt + (1−mt )⊙ x̂t (4)

here ⊙ denotes the element-wise multiplication operation. We
lso determine the multivariate relations, ẑt , from Jung et al.
2020) among MRI features of the imputed temporal vector x̃t by
sing a linear transformation with learnable parameters Wz and
z as follows:

ˆt = Wz x̃t + bx (5)

e maintain the diagonal elements in Wz at zero by multiplying
z with an inverse identity matrix so that we can focus on the

elation between features.
To combine the imputed representations, we use the temporal

ecay factor λ from Cao et al. (2018) to dynamically determine
t
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Fig. 4. Architecture of the Imputation module used for estimating missing values.

a weighting coefficient vector for each imputation. The temporal
decay factor λt ∈ (0, 1]N is introduced as follows:

λt = e{−max (0,Wλϕt+bλ)} (6)

where Wλ and bλ are learnable parameters. Then, we compute
the weighting coefficient vector, χt , as follows:

χt = σ
(
Wχ [λt ⊕mt ]+ bχ

)
(7)

where Wχ and bχ are learnable parameters, ⊕ denotes the con-
catenation operation, and the sigmoid σ is used as activation
function. χt is in the range [0, 1], and is used to scale the pro-
portion between the static and dynamic relations. Lastly, we
estimate the missing values using an interpolation between the
static, x̄ and x′t , and the dynamic relations, x̂t and ẑt , and their
corresponding coefficients, χt , λ1,t and λ2,t , as follows:

ût =χt
[
λ1,t ⊙ x̂t +

(
1− λ1,t

)
⊙ ẑt

]
+ (1− χt)

[
λ2,t ⊙ x′t +

(
1− λ2,t

)
⊙ x̄

] (8)

where λ1,t and λ2,t are calculated using Eq. (6). Consequently,
we obtain the complete observation vector ũt by replacing the
missing values with the estimates in Eq. (8) as follows:

ũt = mt ⊙ xt + (1−mt )⊙ ût (9)

The imputation module is illustrated in Fig. 4. We utilize tem-
poral and multivariate relations by following Jung et al. (2020).
Sometimes, a feature may not be available for several timepoints,
which can degrade the temporal relations. Therefore, we deter-
mine the missing values of each feature by using its correlations
with another feature (multivariate relations). However, a feature
occasionally has few relations that can be used to obtain both
temporal and multivariate features. Therefore, we consider static
relations, the last valid observation and the global mean, where
the former captures characteristics of the patient and the latter
represents the distribution of data. In general, we impute missing
values by combining static and dynamic relations.

3.3. The Encoding module

We exploit the deep recurrent network for temporal encod-
ing in the forward path of the bidirectional network, and this
can be applied similarly to the backward path. We devise a
computational mechanism, called multifeature aggregated long
short-term memory with progressive score (MAPro-LSTM), that
admits the complete value at the given timepoint ũt in Eq. (9),
the complete value at the baseline timepoint, ũ0, previous hidden
tate ht−1, previous cell state ct−1, temporal decay factor λt ,
asking observation mt , and patient demographics xd,t . We first

embed the hidden state ht−1 and cell state ct−1 with temporal
decay factors λ and λ , respectively, into Eq. (6) to capture
3,t 4,t
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Fig. 5. Architecture of the MAPro-LSTM module for encoding temporal
representation.

diverse knowledge from missing information (Che et al., 2018),
ĥt−1 and ĉt−1. These can be formulated as follows:

ĥt−1 = λ3,t ⊙ ht−1

ĉt−1 = λ4,t ⊙ ct−1
(10)

By taking advantage of the progressive score models in Bilgel
et al. (2016) and Jedynak et al. (2012), we propose a dynamic
progressive module formed by a negative exponential function as
follows:

ĝt = πtWgσ

(
γγγ ge−αααg(ũt−ũ0)

)
+ bg (11)

where Wg , γγγ g , αααg , and bg are learnable parameters, πt is the
categorical factor used to determine whether the trajectory is de-
creasing or increasing, and can be expressed as a random choice
between −1 and 1, and σ defines a sigmoid function. The differ-
ence between Eq. (11) and the expressions in Jedynak et al. (2012)
and Jung et al. (2020) is that we use features of the biomarker
to compute the progression instead of age, and the parameters
are learned from a deep network instead of linear models. By
integrating the progressive module into the deep recurrent net-
work, we can learn the progressive score dynamically. In addition,
we insert the masking vector mt and patient demographics xd,t
directly into the model, where mt indicates whether the input
features are either observed or missing. The update functions of
the proposed MAPro-LSTM are expressed similarly to the typical
LSTM-based cell as follows:

ft = σ

(
Wf

[
ũt; xd,t; ĝt; ĥt−1; ĉt−1;mx,t

]
+ bf

)
it = σ

(
Wi

[
ũt; xd,t; ĝt; ĥt−1; ĉt−1;mx,t

]
+ bi

)
ot = σ

(
Wo

[
ũt; xd,t; ĝt; ĥt−1; ĉt−1;mx,t

]
+ bo

)
c̃t = tanh

(
Wc̃

[
ũt; xd,t; ĝt; ĥt−1;mx,t

]
+ bc̃

)
ct = ft ⊙ ct−1 + it ⊙ c̃t
ht = tanh (ct)⊙ ot

(12)

Eq. (12) presents the forget gate ft , input gate it , and output gate
ot of the LSTM model, where Wf , Wi, Wo, bf , bi, and bo are sets of
learnable parameters. The update gate c̃t is also presented with a
set of learnable parameters {Wc̃, bc̃}. Lastly, the cell state ct and
hidden state ht are sequentially updated. The architecture of the
MAPro-LSTM in case of the forward path is shown in Fig. 5. For
the backward process, ũ0 is replaced with complete features at
the penultimate timepoint, and the previous states are replaced
with the next ones (ht+1 and ct+1).

3.4. Forward-to-backward bidirectional strategy

As mentioned above, we use the hidden states from the RNN
to update the imputation task. However, the typical bidirectional
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NN cannot update the inputs because both directions work
ndependently and there is no connection between them. This
ecessitates the development of a new strategy to train the
idirectional network, after which a bidirectional strategy that
an adapt and update inputs, as explained in Algorithm 1, is
efined. Given the inputs, ũ as the outcome of the Imputation
odule, and s as a set of

[
xd,t ,mt

]
, we can extract the hidden

states h. Instead of running the forward and backward directions
separately, we use the idea presented in He, Kenton, Mike, and
Luke (2017), where the forward path was run first to determine
the representation of the sequence from the past to the future,
and the first update Ψ

(
[
→

h t−1]

)
was performed on the next

inputs by using forward hidden states. Then, we ran the backward
path to extract temporal features from the future to the past
and perform the second update Ψ

(
[
→

h t−1,
←

h t+1]

)
on the inputs

using both the forward and the backward hidden states. Ψ is the
sequence of operations from the Imputation module. To update
the current hidden and cell states in both directions,

[
→

h t ,
→

c t

]
and

[
←

h t ,
←

c t

]
, we use update functions in the MAPro-LSTM cell.

Lastly, we collect all hidden states in the forward and backward
directions in the same order of timepoints.

Algorithm 1 Forward-to-backward Bidirectional Strategy
Input: ũ = {ũ1, ũ2, . . . , ũT }, s = {s1, s2, . . . , sT }
Output: h = {h1, h2, . . . , hT }

1: Run forward path
2: for t = 1, 2, . . . , T do
3: Initialize hidden and cell states
4: if t == 0 then
5:

→

h t−1 ← 0,
→

c t−1 ← 0
6: end if
7: Update input

8: ũt ← Ψ

(
[
→

h t−1]

)
9: Update hidden and cell states

10:
→

h t ,
→

c t ← MAPro-LSTM
(
ũt , ũ0, st ,

→

h t−1,
→

c t−1

)
11: end for
12: Run backward path
13: for t = T , T − 1, . . . , 1 do
14: Initialize hidden and cell states
15: if t == T then
16:

←

h t+1 ←
→

h t ,
←

c t+1 ←
→

c t
17: end if
18: Update input

19: ũt ← Ψ

(
[
→

h t−1,
←

h t+1]

)
20: Update hidden and cell states

21:
←

h t ,
←

c t ← MAPro-LSTM
(
ũt , ũt+1, st ,

←

h t+1,
←

c t+1

)
22: end for
23: h = {

→

h,
←

h}

3.5. The Forecasting module

The Forecasting module produces outcomes based on the hid-
en state representations

→

h t and
←

h t from the ProLSTM module
for both the forward and the backward paths, respectively. The
outcomes of MRI measurements x̃t+1 and the clinical state ỹt+1 of
the next timepoint are formulated using multivariate linear and
logistic models as follows:

x̃ =

→

W
→

h +
←

W
←

h + b (13)
t+1 x̃ t x̃ t x̃

427
ỹt+1 = softmax
(→
Wỹ
→

h t +
←

Wỹ
←

h t + bỹ

)
(14)

where
→

Wx̃,
←

Wx̃,
→

Wỹ,
←

Wỹ, bx̃, and bỹ are learnable parameters.

3.6. Objective functions

To jointly train the three modules, i.e., Imputation, ProLSTM,
and Forecasting, we define a blended loss function to update and
optimize our objectives. We first measure the imputation loss
Limputation by using the mean absolute error (MAE) between the
observed data and the imputed values from different perspec-
tives. By taking advantage of the proposal in Cao et al. (2018)
to enhance the speed of convergence, the imputation loss can be
expressed as follows:

→

Limpute =

T∑
t=1

(⏐⏐⏐⏐→x t −

→

ĥ t

⏐⏐⏐⏐
+

⏐⏐⏐⏐→x t −

(
→

λ x̂,t ⊙
→

x̂ t +

(
1−

→

λ x̂,t

)
⊙

→

ẑ t

)⏐⏐⏐⏐
+

⏐⏐⏐→x t −

(
→

λx,t ⊙
→

x t−1 +

(
1−

→

λx,t

)
⊙

→

x̄
)⏐⏐⏐)⊙ →mt

←

Limpute =

T∑
t=1

(⏐⏐⏐⏐←x t −

←

ĥ t

⏐⏐⏐⏐
+

⏐⏐⏐⏐←x t −

(
←

λ x̂,t ⊙
←

x̂ t

(
1−

←

λ x̂,t

)
⊙

←

ẑ t

)⏐⏐⏐⏐
+

⏐⏐⏐←x t −

(
←

λx,t ⊙
←

x t−1 +

(
1−

←

λx,t

)
⊙

←

x̄
)⏐⏐⏐)⊙ ←mt

Limpute =
→

Limpute +
←

Limpute (15)

where
→

υ t and
←

υ t denote any variable υ in the forward and back-
ward processes, respectively. To predict the MRI biomarker, we
formulate the empirical measurements xt+1 and the predictions
of the model x̃t+1 as follows:

Lforecast =

T−1∑
t=1

(
xt+1 ⊙mt+1 − x̃t+1 ⊙mt+1

)2 (16)

Eventually, we use the categorical focal loss (Lin et al., 2017) for
clinical prediction. Focal Loss (FL) is an enhanced version of cross-
entropy (CE) loss used to handle the problem of class imbalance
by assigning more weights to examples that are difficult or easy
to incorrectly classify, and to those whose weights can be easily
reduced. The categorical focal loss can be expressed as follows:

Lpredict = −

T−1∑
t=1

my,t+1
[
τyt+1

(
1− ỹt+1

)ε log
(
ỹt+1

)]
(17)

where τ and ε are tunable focusing parameters, and my is the
label mask of clinical prognosis used to ignore non-label informa-
tion. Lastly, the total loss function Ltotal is expressed as follows:

Ltotal = Limpute + Lforecast + Lpredict (18)

3.7. Explainable AI (XAI) with Shapley values

The explainable AI (XAI) (Babic, Gerke, Evgeniou, & Cohen,
2021; Holzinger, Malle, Saranti, & Pfeifer, 2021; Ieracitano, Mam-
mone, Hussain, & Morabito, 2021; Yang, Ye, & Xia, 2021) of
models is a fundamental component of the machine learning
workflow. Maintaining a machine learning model in a ‘‘black box’’

state is no longer an option. Fortunately, such analytical tools
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s LIME (Ribeiro, Singh, & Guestrin, 2016), ExplainerDashboard,1
hapash,2 and Dalex (Baniecki, Kretowicz, Piatyszek, Wisniewski,
Biecek, 2020) are quickly gaining popularity. In this study, we
sed the SHAP (Shapley Additive Explanations) (Lundberg & Lee,
017) approach, which achieved the best paper award in the
eurIPS Workshop on Interpretable Machine Learning in Complex
ystems in 2016 for explaining the outcomes of biomarker fore-
asting and clinical status prediction tasks. This method is based
n game-theoretically optimum Shapley values. Shapley values
re a commonly used concept in cooperative game theory that
as a number of attractive qualities. The feature values of a data
nstance serve as members of a coalition. The Shapley value is
he average marginal contribution of a feature value in all feasible
oalitions.
Specifically, our proposed model includes multiple inputs (fea-

ures, masks of missing values, temporal decay, etc.) and multiple
utputs (phenotypic measurement forecasting and clinical status
rediction); therefore, we calculate the Shapley values, S{c}in , of the
th target sample at the nth input feature from the cth outcome
s follows:

{c}
in =

T∑
t=1

1
P

P∑
j=1

∇f {c}jtn ∗

(
x{c}itn − φ

{c}
jtn

)
(19)

nd:

f =
∂ f (φ)

∂φ
(20)

here x is target sample, φ is the reference sample, ∇f is the
radient computation of the trained model, T is the number of
imepoints, and P is the number of reference samples. The gradi-
nt computation is carried out by using the differential equation
f model prediction f (φ) on the reference samples. Finally, we
um the Shapley values of all outputs K to get the mean absolute
hapley value for the nth feature over all target samples:

n =
1
Q

Q∑
i=1

⏐⏐⏐⏐⏐
C∑

c=1

S{c}in

⏐⏐⏐⏐⏐ (21)

here Q is the number of target samples and C is the number of
utputs for a certain task.

. Experimental results and analysis

.1. Materials and settings

We used the TADPOLE challenge cohort3 from the Alzheimer’s
isease Neuroimaging Initiative (ADNI) database,4 which includes
DNI-1, ADNI-2, and ADNI-GO. The TADPOLE data contain ap-
roximately 1500 kinds of biomarkers (Jung et al., 2020), e.g., the
ortical thickness and cortical volume of 1737 patients (ages
4.5 to 98.6 years), over 12,741 visits at 22 timepoints from
005 to 2017. Since our main objective is to predict the annual
rogression, we collected 11 regular visits out of the 22 visits.
e first sorted the raw data by deleting timepoints that had

1 https://explainerdashboard.readthedocs.io/.
2 https://shapash.readthedocs.io/.
3 Available at https://tadpole.grand-challenge.org/Data/.
4 Data used in the preparation of this article were obtained from the
lzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.
sc.edu). The ADNI was launched in 2003 as a public–private partnership led
y Principal Investigator Michael W. Weiner, MD. Its primary goal has been
o test whether serial magnetic resonance imaging (MRI), positron emission
omography (PET), other biological markers, and clinical and neuropsychological
ssessments can be combined to measure the progression of mild cognitive im-
airment (MCI) and early Alzheimer’s disease (AD). For up-to-date information,
he interested reader can see www.adni-info.org.
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Table 1
The statistics of raw and clean TADPOLE data.
Characteristic Raw data Clean data

No. of patients 1737 1335
No. of timepoints 12,741 11,048
Maximum visits/patient 22 11
Average visits/patient 5.76 5.64
Male/Female 957/780 740/595
Range of age 54.5∼98.6 55.0∼91.4

been duplicated and those with incorrect measurements, filtered
irreversible patients who had constantly changed their state from
AD to MCI or from MCI to CN during historical observations, and
removed patients with no baseline diagnosis, or those who had
already been diagnosed as having AD at the baseline timepoint.
Because our main objective was to forecast both clinical status
and MRI measurements, we considered only patients who had
at least two visits. Similar to the work in Bilgel et al. (2019),
we merged the groups of CN to MCI and MCI to CN into MCI,
those of CN to dementia and MCI into dementia, and those of
dementia to MCI into AD to obtain three categories: CN, MCI,
and AD. We obtained data on 1335 patients in total with 11,048
timepoints, which resulted in stable data on 892 patients whose
status had not been changed to AD dementia during historical
observations, and 443 progressive patients, who had not been
initially diagnosed as having AD dementia but whose diagnoses
were changed during historical observations. The statistics are
shown in Table 1.

By following the work in Jung et al. (2020), Oxtoby et al.
(2018) and Ghazi et al. (2019), we considered the volumes of the
ventricles, hippocampus, fusiform gyrus, middle temporal gyrus,
entorhinal cortex, and the entire brain, which are extracted from
T1-weighted MRI, as biomarker features (Bio.). We also included
patient demographics (age (Age), gender (Gen.), education (Edu.),
race (Race), ethnicity (Eth.), and marital status (M.S.)) as pa-
tient demographic features. An example of the data structure is
shown in Fig. 6. To compensate for intersubject variability in brain
sizes, as in Ghazi et al. (2019), we normalized the volumetric
MRI biomarkers with an individual intracranial volume (ICV).
We then standardize the MRI features based on the mean and
standard deviation (standard score) so that they were within
a standard normal distribution. For the demographic data, we
encoded gender, race, ethnicity, and marital status by one-hot
encoding, encoded age by z-score normalization, and education
by dividing it with the maximum value. The missing rates of the
six volumes are shown in Fig. 7.

Of the 11 collected timepoints, we used the first 10 visits,
including the baseline, to forecast for several years. For each time-
point, the forecast was conducted based on, if unacknowledged
or missing, all observed historical values and those predicted
or imputed. We reported the average results of five-fold cross-
validation, which involved randomly separating the dataset into
five partitions: One part was used as the test set and the rest
for training, with a ratio of 8 : 2. To evaluate performance
on the imputation task, we randomly removed 20% of the real
observation values in the samples used for training validation,
and testing, and then used them as the ground truth for the
missing values. We used all observations for the clinical status
prediction and MRI biomarker forecasting tasks.

For quantitative evaluation, we used the same metrics as in
Jung et al. (2020): the MAE and mean relative error (MRE) for the
imputation task, the MAE for the MRI biomarker forecasting task,
and multiclass area under the receiver-operating characteristic
curve (mAUC), accuracy (ACC), precision (PRE), and recall (REC)
scores for the clinical status prediction task. We compared our
model with those reported in Che et al. (2018), Jung et al. (2020),
Nguyen et al. (2020) and Yoon et al. (2019). We conducted exper-
iments by using static imputation methods, such as zero-padding

https://explainerdashboard.readthedocs.io/
https://shapash.readthedocs.io/
https://tadpole.grand-challenge.org/Data/
https://adni.loni.usc.edu
https://adni.loni.usc.edu
http://www.adni-info.org
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Fig. 6. Example of TADPOLE data structure.
Fig. 7. Missing rate of volumetric MRI biomarkers.

Table 2
Hyper-parameter settings.
Characteristic Parameter

RNN hidden units 64
Optimizer ADAM
No. of epochs 100
Batchsize 32
Learning rate 3 × 10−3

Focal loss (τ ; ε) (Lin et al., 2017) (0.25; 2)

(Simple – S), mean value (Mean – M), and the most recent
bservation (Forward – F ) followed by the GRU, GRU-S, GRU-M,
nd GRU-F. The parameter settings for all models are presented
n Table 2. We also report the number of parameters and the
ime required for inference in the training process for each model
n Fig. 8. The calculation of the time needed for inference was
ased on an average of 100 epochs with a batchsize of 32. Fig. 8
hows that due to the use of bidirectional networks, our proposed
iPro incurred a higher computational cost (in terms of both
he number of parameters and inference time) than the other
ethods. This is a limitation of the proposed method. However,
ince the model has fewer than one million parameters converged
uickly, in fewer than 1000 epochs, the training time was less
han 200 seconds. It can thus be used in practice.

.2. Performance of recent methods based on machine learning and
eep learning on AD detection

Various methods have been used to diagnose Alzheimer’s dis-
ase in the literature, and can be categorized into two groups:
429
machine learning-based methods and deep learning-based meth-
ods. In this research, we highlight the most recent and efficient
strategies that have been recommended in the literature from
2018 to 2020. Recently published studies on Alzheimer’s dis-
ease diagnosis using machine learning are shown in Table 3 and
those that use deep learning-based are illustrated in Table 4.
The machine learning-based approaches use the support vector
machine (SVM) with radial basis function (RBF) (Tabarestani,
Aghili, Shojaie, Freytes, & Adjouadi, 2018), principal component
analysis (PCA) (Cui et al., 2018), generalized linear model (GLM)
(Shahbaz, Ali, Guergachi, Niazi, & Umer, 2019), and personal-
ized Gaussian process experts (pGPE) (Utsumi et al., 2019) to
classify AD status or estimate cognitive measurements. Of deep
learning-based approaches, the 3D convolution neural network
(3DCNN) (Xia et al., 2020) and the high-level layer concatenation
autoencoder (HiLCAE) (Vu et al., 2018) have been used to learn
spatial features, and the deep neural network (DNN) (Park, Ha, &
Park, 2020), 3DVGG16 (Vu et al., 2018), sparse autoencoder (SAE)
(Martinez-Murcia, Ortiz, Gorriz, Ramirez, & Castillo-Barnes, 2019),
deep ensemble learning (DELearning) (An, Ding, Yang, Au, & Ang,
2020), 3D convolutional long short-term memory (3DCLSTM) (Xia
et al., 2020), and bidirectional long short-term memory (BiLSTM)
(Abuhmed, El-Sappagh, & Alonso, 2021) have been used to detect
the AD state or localize AD-related regions. In general, all meth-
ods used features of patients obtained in recent visits to diagnose
them instead of predicting progression.

4.3. Performance in terms of missing value imputation

The experimental performance of the methods on imputing
the missing values in the data is shown in Table 5. Our proposed
method achieved the lowest MAE and MRE scores, thus outper-
forming all other methods. Its MAE was 6.861 ml and MRE was
9.816%, improvements of 0.74 ml and 1.124%, respectively. We
did not compare our model with those developed in Nguyen et al.
(2020) since their model did not support the imputation task. We
also performed a t-test analysis to compare our proposed BiPro
model with the other models. For all comparisons, p < 0.05
as calculated by ANOVA, verifying that our proposed model was
significantly different from the other models.

Our proposed method considered systematically missing pat-
terns based on temporal relations, multivariate relations, the
empirical mean and final observation, and time delay through
a series of operations. This systematic imputation is beneficial,
and significantly enhanced performance. In addition, we show the
results of imputation in terms of individual volume error in Fig. 9.
Fig. 9(a) presents the mean absolute error in the estimated whole-
brain volume in the right-vertical axis and the other volumes
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Fig. 8. Number of parameters and inference times of all models.
Table 3
Machine learning-based approaches for Alzheimer’s disease detection.
Author Year Target Method Modality Dataset Performance

Tabarestani et al. (2018) 2018 MMSE estimation SVM-RBF Clinical data ADNI RMSE of 3.06
Cui et al. (2018) 2018 NC vs AD PCA fMRI ADNI Accuracy of 91.3%
Bucholc et al. (2019) 2019 Multiclass AD classification SVM Cognitive assessments ADNI Accuracy of 83%
Shahbaz et al. (2019) 2019 Multiclass AD classification GLM Clinical data ADNI Accuracy of 88.24%
Utsumi et al. (2019) 2019 Cognitive changes pGPE Clinical data ADNI MAE of 2.65
Afzal et al. (2019) 2019 Multiclass AD classification SVM MRI ADNI Accuracy of 92.4%
Table 4
Deep learning-based approaches for Alzheimer’s disease detection.
Author Year Target Method Modality Dataset Performance

Vu et al. (2018) 2018 AD classification HiLCAE-3DVGG16 MRI PET ADNI Accuracy of 98.8%
Martinez-Murcia et al. (2019) 2019 AD classification SAE MRI ADNI Accuracy of 86.47%
Huang et al. (2019) 2019 AD classification 3DCNN MRI PET ADNI Accuracy of 90.1%
An et al. (2020) 2020 AD classification DELearning Clinical data NACC Accuracy of 85%
Basher et al. (2019) 2019 Hippocampus localization Ensemble Hough-CNN MRI ADNI, GARD RMSE of 2.24 mm
Maqsood et al. (2019) 2019 Multiclass AD classification CNN MRI OASIS Accuracy of 92.85%
Xia et al. (2020) 2020 AD classification 3DCNN-3DCLSTM MRI ADNI Accuracy of 94.19%
Park et al. (2020) 2020 AD classification DNN Genes DNA RMH 44k 1.1, IHM 450 Accuracy of 82.3%
Abuhmed et al. (2021) 2021 AD progression detection BiLSTM Clinical data ADNI Accuracy of 86.08%
Table 5
Performance on the imputation task in terms of MAE and MRE (MEAN±STD).
Model MAE (ml) MRE (%)

GRU-S 11.322 ± 0.480 15.289 ± 0.857
GRU-M 14.554 ± 0.950 15.475 ± 0.736
GRU-F 9.378 ± 1.774 12.208 ± 0.592
GRU-D (Che et al., 2018) 13.784 ± 0.374 15.160 ± 0.729
MRNN (Yoon et al., 2019) 11.78 ± 0.832 15.383 ± 0.78
LSTM-I (Jung et al., 2020) 7.601 ± 0.361 10.94 ± 0.343
BiPro (Proposed) 6.861 ± 0.396 9.816 ± 0.511

The best performance is indicated in boldface.

in the left-vertical axis. In addition, Fig. 9(b) presents the mean
relative error in the volume of the ventricle in the right-vertical
axis and the other volumes in the left-vertical axis. These figures
show that our proposed model obtained the lowest error rates of
all models.

4.4. Performance in terms of MRI biomarker forecasting

The forecasting errors in terms of the MAE over the MRI
iomarkers are presented in Table 6. It expresses combinations of
atient-related information and the biomarkers. By capturing the
emporal and multivariate relations inherent in the data as well as
he global mean and the last observed values, our proposed model
utperformed the state-of-the-art method proposed by Jung et al.
2020), with a margin of 3.11 ml when using only biomarkers
nd 2.6 ml when combining all patient-related information with
430
the biomarkers. Table 6 shows that our model achieved the best
performance with a combination of age and biomarkers. In gen-
eral, patient information did not significantly support the task of
MRI biomarker forecasting compared with when only biomarkers
were used. All pairwise comparisons were statistically significant
(p < 5× 10−4 as calculated by ANOVA).

In addition, we tested the performance in terms of forecasting
MRI biomarkers for different MRI volumes with each combina-
tion, as shown in Fig. 10. In this figure, the right-vertical axis
measures the MAE of the ventricles and the whole-brain volumes,
while and the left-vertical axis measures the MAEs of the hip-
pocampus, entorhinal, fusiform, and middle temporal volumes. In
all cases, the proposed model obtained the lowest error on every
predicted volume.

4.5. Performance in terms of clinical status prediction

For the clinical status prediction task, we also report the ACC,
PRE, and REC scores along with the mAUC, as shown in Table 7.
We present the comparison between the proposed method and
the other methods by using a combination of all information and
biomarkers. Our proposed BiPro delivered the best performance
on all metrics. In particular, it outperformed all other methods
to achieve the highest ACC, PRE, REC, and mAUC scores, with
margins of 3.25%, 2.93%, 3.23%, and 2.58%, respectively, compared
with the LSTM-I (Jung et al., 2020) method. The pairwise com-
parisons were statistically significant (p < 0.002 as calculated by
ANOVA).
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Fig. 9. Performance in terms of missing value imputation for individual volumes. MAE was calculated in milliliters and MRE in percentages.
Table 6
Performance on forecasting MRI biomarkers for the next year visit in terms of the MAE (MEAN± STD) in milliliter (ml).
Feature GRU-S GRU-M GRU-F GRU-D (Che

et al., 2018)
MRNN (Yoon
et al., 2019)

MinRNN (Nguyen
et al., 2020)

LSTM-I (Jung
et al., 2020)

BiPro (Proposed)

Bio. 7.51 ± 1.3 7.26 ± 1.05 7.4 ± 1.53 7.55 ± 1.57 9.33 ± 2.04 6.77 ± 1.06 6.64 ± 0.97 3.53 ± 0.47
Age + Bio. 8.18 ± 1.3 7.98 ± 1.18 7.84 ± 1.44 8.22 ± 1.48 8.38 ± 1.94 6.76 ± 0.87 6.63 ± 1.24 3.49 ± 0.25
Gen. + Bio. 8.1 ± 1.62 8.04 ± 1.23 8.02 ± 1.42 8.18 ± 1.53 8.91 ± 1.32 6.98 ± 1.09 6.87 ± 1.43 3.69 ± 0.64
Edu. + Bio. 8.07 ± 1.31 7.65 ± 1.15 7.84 ± 1.51 8.05 ± 1.6 8.62 ± 1.37 6.76 ± 1.21 6.5 ± 1.11 3.62 ± 0.4
Race + Bio. 7.85 ± 1.71 7.62 ± 1.21 7.75 ± 1.41 7.6 ± 1.33 8.77 ± 1.59 6.94 ± 1.1 6.5 ± 1.24 3.59 ± 0.31
Eth. + Bio. 7.59 ± 1.11 7.9 ± 1.05 7.83 ± 1.26 8.19 ± 1.76 8.22 ± 0.97 7.07 ± 0.86 6.48 ± 1.21 3.66 ± 0.5
M.S. + Bio. 7.71 ± 1.16 7.72 ± 1.06 7.86 ± 1.2 7.68 ± 1.12 8.7 ± 1.59 6.69 ± 1.02 6.82 ± 1.01 3.77 ± 0.68
All + Bio. 8.37 ± 1.37 8.06 ± 1.22 8.47 ± 1.72 8.31 ± 1.6 9.07 ± 1.52 7.59 ± 1.06 6.78 ± 1.23 4.18 ± 0.23

The smallest MAE is highlighted in boldface.
Table 7
Performance of multiple classification (CN vs. MCI vs. AD) for the next one-year patient visits in terms of ACC, PRE,
REC, and mAUC (MEAN± STD).
Model ACC PRE REC mAUC

GRU-S 52.48 ± 3.37 53.81 ± 2.09 52.35 ± 3.64 70.61 ± 2.41
GRU-M 53.52 ± 2.58 54.02 ± 2.7 53.51 ± 2.14 74.03 ± 2.3
GRU-F 54.49 ± 2.58 55.28 ± 2.67 53.63 ± 3.27 74.77 ± 2.13
GRU-D 53.22 ± 2.54 53 + .94 ± 3.23 52.94 ± 2.92 74.24 ± 2.23
MRNN 54.06 ± 3.13 56.44 ± 3.98 53.58 ± 3.19 74.77 ± 2.74
MinRNN 54.37 ± 1.84 54.96 ± 1.69 53.56 ± 2.06 75.14 ± 2.07
LSTM-I 55.22 ± 3.12 56.32 ± 2.94 54.55 ± 2.96 75.66 ± 1.92
BiPro (Proposed) 58.47 ± 2.94 59.25 ± 3.7 57.78 ± 3.44 78.24 ± 1.11

The best performance on each metric is highlighted in boldface.
For further comparison, we show the confusion matrices over
ll methods as well as the proposed BiPro when all patient-
elated information and biomarkers were used, as shown in
ig. 11. The results confirm that the proposed model can deliver
alanced performance on the three classes: CN, MCI, and AD.
he other models performed well for only one class, e.g., GRU-M,
RU-F, GRU-D, and MRNN performed well on the CN class, and
inRNN and LSTM-I on the MCI class. We show the performance
f the models when only biomarkers were used, and when a
ombination of the biomarkers and one demographic feature was
sed, in Fig. 12 in terms of accuracy, precision, recall, and mAUC.
n general, the proposed BiPro model outperformed all other
odels, with the patient age having the greatest influence on
erformance.
Furthermore, to understand how partial loss functions are

earned, we visualized the clinical data, biomarkers, and imputa-
ion losses over 100 epochs by using the MRNN, LSTM-I, and the
roposed BiPro models, as shown in Fig. 13. Because the GRU-D
nd MinRNN did not update the imputation loss, we show only
he histories of the losses of clinical and biomarker data for these
odels. The figure presents the case of using biomarkers with all
atient demographics. It shows that the proposed BiPro learned
431
all three tasks better than the other models, and yielded fewer
outliers and a lower overall cost over time.

4.6. Additional verification

4.6.1. Results without the Imputation module
To efficiently validate the proposed BiPro, we excluded the Im-

putation module from the system. To this end, all missing values
were imputed by using the global mean values for all models. The
results for MRI biomarker forecasting are presented in Tables 8
and 9. They show that the proposed BiPro model slightly outper-
formed the other, conventional, models without the Imputation
module, with the lowest MAE for MRI biomarker forecasting (Ta-
ble 8) in most cases except those involving combinations of (race
+ biomarker) and (all patient information + biomarker), and the
highest mAUC in all combinations for clinical status prediction
(Table 9). The Imputation module thus significantly supports MRI
biomarker forecasting, and supports the prediction of the clinical
status of the patient to a lesser extent.

4.6.2. Results on data for stable and progressive patients
In this subsection, we examine the performance of the meth-

ods on groups with data on stable and progressive patients. Stable
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Fig. 10. Performance in terms of MRI biomarker forecasting using each combination. The right-vertical axis measures the MAE of the ventricles and whole-brain
volumes while the left-vertical axis measures the MAE of the hippocampus, entorhinal, fusiform, and middle temporal volumes.
Table 8
Performance of the methods on MRI biomarker forecasting without missing value imputation. Values are in the form (MEAN± STD).
Feature GRU-D

(Che et al., 2018)
MRNN
(Yoon et al., 2019)

MinRNN
(Nguyen et al., 2020)

LSTM-I
(Jung et al., 2020)

BiPro (Proposed)

Bio. 7.12 ± 0.92 8.73 ± 1.77 6.92 ± 1.28 7.91 ± 1.24 6.23 ± 0.8
Age + Bio. 8.01 ± 1.46 9.06 ± 1.73 6.87 ± 1.41 8.52 ± 1.46 6.81 ± 1.33
Gen. + Bio. 7.58 ± 1.16 9.06 ± 1.09 6.96 ± 1.29 8.16 ± 1.2 6.89 ± 1.23
Edu. + Bio. 7.38 ± 1.11 8.94 ± 1.76 6.59 ± 0.87 8.06 ± 1.18 6.32 ± 1.12
Race + Bio. 7.31 ± 0.84 9.47 ± 2.3 7.02 ± 1.07 8.16 ± 1.31 7.2 ± 1.46
Eth. + Bio. 7.66 ± 0.99 9.05 ± 1.88 7.01 ± 1.18 8.15 ± 1.21 6.72 ± 0.83
M.S. + Bio. 7.55 ± 1.46 8.8 ± 1.92 7.0 ± 1.22 7.9 ± 0.96 6.34 ± 1.08
All + Bio 8.25 ± 1.35 8.84 ± 1.89 7.67 ± 1.32 8.66 ± 1.3 8.35 ± 0.8

The best performance on each metric is highlighted in boldface.
432
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Fig. 11. Confusion matrices of the eight methods obtained by using all patient information and biomarkers.
atients included those with stable CN who had remained in the
N state throughout the observed time, and those with stable MCI
ho had begun with an MCI state that had not transformed into
D. Progressive patients included those who had begun with the
N state and had later transitioned to MCI or AD (progressive
N), or who had begun with the MCI state and later transitioned
o AD (progressive MCI). Fig. 14(a) shows the box plot of the
ethods on both stable and progressive patients in terms of MRI
iomarker forecasting, where the true median of the proposed
iPro model differs from those of the other models with 95%
433
confidence. The box-plot predictions of the clinical status of both
groups of patients are shown in Fig. 14(b), where the difference
between BiPro’s median and those of the other models is greater
than 2%. This supports our conclusion that the true median of the
proposed BiPro model differed from those of the other models
with 95% confidence. In a comparison between data on stable
and progressive patients, the performance of the methods on
the stable group was better than on the progressive group on
both tasks, as more daunting challenges are involved in capturing
progressive patterns of AD.
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Fig. 12. Comparison of different combinations of patient information and biomarkers.
Table 9
Performance of all methods on clinical status prediction without missing value imputation. Values are in the form (MEAN± STD).
Feature GRU-D

(Che et al., 2018)
MRNN
(Yoon et al., 2019)

MinRNN
(Nguyen et al., 2020)

LSTM-I
(Jung et al., 2020)

BiPro (Proposed)

Bio. 68.91 ± 2.79 66.67 ± 5.28 68.29 ± 1.72 70.47 ± 2.14 74.91 ± 2.95
Age + Bio. 71.04 ± 1.74 70.96 ± 5.94 71.13 ± 2.11 70.78 ± 1.24 75.74 ± 1.36
Gen. + Bio. 70.37 ± 1.46 66.03 ± 2.31 70.76 ± 2.09 71.13 ± 1.11 73.29 ± 1.63
Edu. + Bio. 68.39 ± 1.43 65.47 ± 2.34 70.53 ± 1.66 70.6 ± 1.59 74.66 ± 2.09
Race + Bio. 69.03 ± 1.99 70.89 ± 2.58 70.96 ± 1.98 69.8 ± 1.37 74.38 ± 1.74
Eth. + Bio. 68.04 ± 2.32 67.79 ± 2.19 68.08 ± 2.22 70.85 ± 2.25 73.28 ± 2.73
M.S. + Bio. 70.73 ± 2.71 68.68 ± 2.3 70.61 ± 2.11 69.46 ± 0.93 72.26 ± 1.24
All + Bio. 72.18 ± 2.24 73.91 ± 1.95 74.19 ± 1.93 74.67 ± 1.1 77.02 ± 0.68

The best performance in each metric is highlighted in boldface.
4.6.3. Results with different timepoint prediction
In this section, we examine the predictions of the methods at

different timepoints. Given a timepoint t, we used data from the
434
baseline up to the tth timepoint to make 10 year predictions of
the clinical status of patients and their MRI biomarkers. Fig. 15(a)
illustrates the results of MRI biomarker forecasting and 15(b)
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Fig. 13. Visualizing the partial losses on three learning tasks.
Fig. 14. Box-plot of predictions of AD progression in case of data on stable and progressive patients.
shows the performance of the methods in terms of predicting
clinical status using data accumulated up to time t. The perfor-
mance of the models improved proportionally with the number
of timepoints used for prediction.

4.6.4. Explainable artificial intelligence analysis
In order to be feasible, AI not only needs to exhibit good

decision-making performance, but also needs to explain these
decisions and convince us that they are correct. We analyzed the
features that were the most important for successful predictions
435
by the models. We use the SHAP (SHapley Additive exPlanations)
toolbox.5 to visualize feature importance as shown in Fig. 16.

Based on the outcomes on biomarker forecasting
(see Fig. 16(a)), the ventricles were the most important
biomarker, with an average SHAP value of 0.85. Biomarker-related
features clearly made a stronger contribution to biomarker fore-
casting than features related to patient information. The outcome

5 https://github.com/slundberg/shap

https://github.com/slundberg/shap
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Fig. 15. Performance obtained using data accumulated up to time t.
f clinical status prediction (see Fig. 16(b)) shows that the hip-
ocampus was the most important feature, with an average
HAP value of 1.66, followed by the middle temporal gyrus (1.4),
ntorhinal cortex (1.21), patient age (1.2), and fusiform gyrus
0.9). The other features, such as gender, ventricles, whole-brain
olume, education, race, and ethnicity were less important, and
HAP values of less than 0.4. A combination of the two outcomes
see Fig. 16(c)) shows that the five most important features
or model prediction were those related to the hippocampus,
usiform gyrus, entorhinal cortex, middle temporal gyrus, and
atient age.

. Conclusions and future work

In this study, we proposed BiPro, a model for disease progres-
ion based on the RNN architecture with progressive LSTM cells,
or tracking the progression of AD. We tested it on the TADPOLE
hallenge cohort at several future timepoints in comparison with
ther methods in the area. BiPro performs three tasks at the
ame time: missing value imputation, MRI biomarker forecasting,
nd clinical status prognosis across multiple timepoints. It has
he capacity to anticipate both patient data and status for future
isits when these three operations are combined, and can model
he 10 year course of Alzheimer’s disease. We used TADPOLE
o analyze the proposed model and verify its feasibility. The
ollowing are the primary contributions of this study:

• We proposed an end-to-end bidirectional RNN-based model
to execute three concurrent tasks to predict the progression
of Alzheimer’s disease using long-term observations. We
also proposed a forward-to-backward bidirectional strategy
for encoding sequential characteristics.
• To the best of our knowledge, the BiPro model is the first

that can perform the integrative imputation of missing val-
ues in longitudinal data, and considers both static and dy-
namic relations. As a result, it can provide reliable esti-
mations of missing data that can be used in subsequent
prediction. Consider the following scenario: Given a patient
subjected to a first test, we may use these measurements in
the BiPro model to forecast their data as well as their status
with regard to Alzheimer’s disease at the next visit. We can
then use the prediction as input for the next timepoint, and
so on. In this way, we can predict the course of illness of
the patient even if only data from only one time point are
available.
• By utilizing the expression for the progression score in

Jedynak et al. (2012), we adapted the LSTM cell with a
progressive module to dynamically learn the evolution of
Alzheimer’s disease.

Overall, the results show that the proposed BiPro model can
redict the statuses of AD patients. Moreover, we inspected
436
Fig. 16. Visualization of feature importance using Shapley values based on the
outcomes.

various scenarios of disease progression. However, our model
still has certain limitations. The feature dimensions of clinical
data are limited (five for demographics and six for biomarkers),
which makes it difficult to fully use the deep learning model.
Meanwhile, imaging data, such as MRI or PET, provide a large
amount of information that is essential for diagnosing Alzheimer’s
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Table A.10
Table of notations.
Symbol Description Symbol Description

T Maximum number of timepoints of time series data t tth Timepoint
N Number of biomarker features n Biomarker n
X Input biomarker features x{n}t Biomarker n at tth timepoint
Xd Demographic features xd,t Demographic features at tth timepoint
νt Timestamp when features are obtained at tth

timepoint
ϕ
{n}
t Missing time interval of biomarker n at tth

timepoint
M Mask of observation (0: missing; 1: observed) m{n}t Observation mask of biomarker n at tth timepoint
→

h t−1 Hidden state of recurrent network from the
previous (t−1)th timepoint in the forward direction

←

h t+1 Hidden state of recurrent network from the next
(t + 1)th timepoint in the backward direction

→

υ t Forward values of a variable υ at tth timepoint
←

υ t Backward values of a variable υ at tth timepoint

Imputation

x̄t Global mean biomarkers at tth timepoint x′t Last valid biomarkers from tth timepoint

x̂t Temporal relation estimation at tth timepoint
→

Wx ,
←

Wx , bx Learnable parameters of x̂t
x̃t Imputed values calculated by temporal relations at

tth timepoint
ẑt Imputed values calculated by multivariate relations

at tth timepoint
Wz , bz Learnable parameters of ẑt

λt Temporal decay factor Wλ , bλ Learnable parameters of λt
χt Weighting coefficient factor of temporal decay at

tth timepoint
Wχ , bχ Learnable parameters of χt

ût Imputed values calculated by last observed, global
mean, temporal and multivariate features

ũt Complete biomarker after imputation at tth
timepoint

Encoding

ĥt Embedded hidden state by temporal decay factor at
tth timepoint

πt Categorical trajectory factor at tth timepoint

ĝt Dynamic progressive score at tth timepoint Wg , γγγ g , αααg , bg Learnable parameters of ĝt
ft Forget gate of the MAPro-LSTM cell t Wf , bf Learnable parameters of ft
it Input gate of the MAPro-LSTM cell t Wi , bi Learnable parameters of it
ot Output gate of the MAPro-LSTM cell t Wo , bo Learnable parameters of ot
c̃t Update gate of the MAPro-LSTM cell t Wc̃ , bc̃ Learnable parameters of c̃t
ht Hidden state of the MAPro-LSTM cell t ct Cell state of the MAPro-LSTM cell t
Ψ Sequence of imputation operation s Set of recurrent inputs

Forecasting
→

h t Hidden state of forward direction at tth timepoint
←

h t Hidden state of backward direction at tth timepoint

x̃t+1 Clinical status prediction at the next (t + 1)th
timepoint

→

Wx̃ ,
←

Wx̃ , bx̃ Learnable parameters of x̃t+1

ỹt+1 MRI biomarker forecasting at the next (t + 1)th
timepoint

→

Wỹ ,
←

Wỹ , bỹ Learnable parameters of ỹt+1

Objective Function
→

Limpute Imputation loss of the forward direction
←

Limpute Imputation loss of the backward direction
Limpute Summation of imputation loss from both directions Lforecast Biomarker forecasting loss
Lpredict Clinical status prediction loss Limpute Total loss
my,t Label mask of clinical prognosis of observed

timepoints
τ , ε Tunable focusing parameters

Shapley Values

C Number of output dimension ∇f Gradient computation
Q Number of target samples P Number of reference samples
x{c}itn Input feature n of target sample ith for output c at

tth timepoint
φ
{c}
jtn Input feature n of reference sample jth for output c

at tth timepoint
S{c}in Shapley value of input feature n of target sample

ith for output c
disease, and are not routinely gathered for long-term diseases
(10 year monitoring). Another disadvantage of the proposed
approach is that it employs equity loss functions for multitask
learning, which can easily cause the model to focus on a specific
task with a higher cost, and to neglect to optimize the training
process.

In future work, we plan to collect imaging data for the pro-
osed model by using a multimodal strategy. We were unable to
cquire complete clinical data, and might have missed images in
any periods. We plan to generate images at missing timepoints
sing either an autoencoder model (Andrew et al., 2021; Dong,
an, Mao, Yang, & Shen, 2018; Mani, Aggarwal, Ghosh, & Jacob,
020; Saravanan & Sujitha, 2020) or a generative adversarial
437
network (Dang, Khurana, & Tiwari, 2020; Gu et al., 2020; Singh &
Raza, 2021). Because using entire reconstructed volume images
may burden the memory, we intend to infer features in latent
space to minimize computational costs. Another possibility is to
extract characteristics from AD-associated regions (Huang et al.,
2011; Lancour et al., 2020; Zhang et al., 2015) and use them to
impute data at the missing timepoints. Furthermore, we used
the equity loss function for multitask learning. However, it is
preferable to conduct additional ablation studies to analyze the
effect of loss functions on a separate basis as well as to select
appropriate weight values for each loss function (Dosovitskiy &
Djolonga, 2019; Groenendijk, Karaoglu, Gevers, & Mensink, 2021).
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